

Multidimensional Relevance in Cross-Encoder Re-ranking to Combat Health Misinformation

Marco Viviani

University of Milano-Bicocca Department of Informatics, Systems, and Communication IKR3 LAB

The Context

• Increasing interest in addressing the problem of implementing effective retrieval models that consider multiple dimensions of relevance across various domains and tasks in the field of Information Retrieval.

→ How to retrieve both topically relevant and "true" documents?

- Today:
 - Document ranking is often achieved by performing a first-stage retrieval, usually focused on topical relevance, to efficiently identify a subset of relevant documents from the entire collection;
 - On this subset, a **re-ranking stage** is performed, where topicality and/or additional dimensions of relevance may be considered.

A «Classical» Re-Ranking Architecture

Aggregation and List Fusion

- Prevailing approaches that consider multiple relevance dimensions in re-ranking are based on the **aggregation** of the topicality score with other relevance dimension scores.
 - These methods employ varied techniques to calculate the relevance scores, a common thread among many is their reliance on simple linear or non-linear aggregation.
- Other approaches leverage **rank fusion** methods, mainly based on Reciprocal Rank Fusion, CombSUM, and Borda count.

Cross-Encoder Re-Ranking (1)

- Approaches that have proven effective for re-ranking are today based on the use of **cross-encoders**.
- A cross-encoder is a type of neural network architecture commonly used for re-ranking tasks in Information Retrieval, Question-Answering, and Natural Language Processing.
 - It operates by **jointly** encoding both the query (or input text) and candidate documents (or response options) to determine how well they match or relate to each other.
- So far, they have been used with respect to a single dimension of relevance, namely topicality.

Cross-Encoder Re-Ranking (2)

- Two sequences i.e., the query q and a candidate document d are concatenated and fed into a Transformer model (like BERT).
- Transformer attention heads can directly model which elements of one sequence are correlated with elements of the other, allowing a (topical) relevance score σ to be calculated.

$$\sigma(q, d) = CE([\text{CLS}] q [\text{SEP}] d [\text{SEP}]) \cdot W$$

CLS and SEP are special tokens. W is a learned matrix that represents the relationship between the query and document representations.

Enhancing Cross-Encoder Re-Ranking

- The CE_{BM25CAT} model (2023) has been proposed to improve the effectiveness of BERT-based re-rankers by injecting the topicality score obtained by a first-stage BM25 model as a token (BM25) into the input of the cross-encoder.
 - Askari, A., Abolghasemi, A., Pasi, G., Kraaij, W., & Verberne, S. (2023, March). Injecting the BM25 score as text improves BERT-based re-rankers. In European Conference on Information Retrieval (pp. 66-83). Cham: Springer Nature Switzerland.

 $\sigma(q, d) = CE([\text{CLS}] q [\text{SEP}] \text{ BM25} [\text{SEP}] d [\text{SEP}]) \cdot W$

Cross-Encoders and Relevance Dimensions

- The *CE_{BM25CAT}* model **does not account** for **additional relevance dimensions** to be used for re-ranking.
- In this work, we aim to explore the impact of incorporating other dimensions of relevance into a cross-encoder for document reranking.
 - E.g., Novelty, readability, credibility.
 - Upadhyay, R., Askari, A., Pasi, G., & Viviani, M. (2024, March). Beyond Topicality: Including Multidimensional Relevance in Cross-encoder Re-ranking: The Health Misinformation Case Study. In European Conference on Information Retrieval (pp. 262-277). Cham: Springer Nature Switzerland.

The Proposed Solution (1)

- We DO NOT manipulate the input sequence of the cross-encoder with an additional relevance score for an additional relevance dimension.
- We **integrate** a so-called **relevance statement** into each document.
 - This statement is constituted by a text related to the relevance dimension under consideration and its associated relevance score.
- This **"enhanced" document** is provided, along with the query, as **input of a cross-encoder** to obtain the **overall** relevance score.

The Proposed Solution (2)

- The cross-encoder-based model proposed in this work to perform reranking is named $CE_{rel.stat}$.
- It is based on performing **four steps**:
 - 1. An initial retrieval phase to compute topicality scores.
 - 2. Computation of a relevance score for an additional relevance dimension → credibility;
 - **3.** Enhancement of the (retrieved) documents with a text related to the additional relevance dimension in the form of a relevance statement;
 - 4. Actual re-ranking that occurs by feeding the cross-encoder with the query and the related enhanced documents.

Detailed Steps (1)

- 1. Ranking \rightarrow BM25 \rightarrow Topicality score.
- 2. Additional relevance dimension → Computing credibility (in the health domain).
 - This approach involves comparing the content of retrieved documents, given a query, with scientific articles, which are considered reliable sources of evidence for the same query.
 - Both the documents and scientific articles are represented using **BioBERT**.
 - How to compute it? \rightarrow Next slide.

Detailed Steps (2)

• Credibility score: $cred(d,q) \rightarrow$ A linear combination of the cosine similarity scores between d and the top-k scientific articles j_i s that were deemed relevant to the same query for which d was retrieved.

$$cred(d,q) = \omega_1 \cdot \cos(d,j_1) + \omega_2 \cdot \cos(d,j_2) + \dots + \omega_k \cdot \cos(d,j_k)$$

where
$$\omega_1, \omega_2, \dots, \omega_k \mid \sum \omega_i = 1$$
, and $\omega_i \ge \omega_{i+1}$ $(1 \le i \le k-1)$.

• These weights allow assigning greater emphasis to the similarity scores according to the rank of the retrieved articles j_i s.

Detailed Steps (3)

- 3. We enhance each document retrieved in the first-stage phase with a relevance statement related to the additional relevance dimension(s) considered.
 - When considering credibility, the form of the statement is: "credibility score of the document is X", where X is the relevance score associated with credibility.

Detailed Steps (4)

- 4. Cross-Encoder re-ranking: we replace the original document in the CE input sequence with the enhanced document representation.
 - I.e., we replace d with \tilde{d} (i.e., the enhanced document).

 $\sigma(q, d) = CE([\text{CLS}] q [\text{SEP}] \tilde{d} [\text{SEP}]) \cdot W$

Task and Considered Datasets

• We focused on the ad-hoc retrieval task in Consumer Health Search.

• Datasets:

- TREC-2020 Health Misinformation Track Dataset.
- CLEF-2020 eHealth Track Dataset.
- A subset of 1 million documents from each track was used, with the TREC-2020 Track covering 46 topics related to Coronavirus and the CLEF-2020 Track covering 50 medical condition topics.

Baselines

- BM25: the BM25 retrieval model as implemented by PyTerrier;
- WAM: a current state-of-the-art aggregation-based multidimensional relevance model;
- *CE*: the original cross-encoder model for re-ranking;
- *CE_{BM25CAT}*: the cross-encoder reranker where the BM25 score is injected into the input sequence of the cross-encoder;

- *CE_{CredCAT}*: a cross-encoder re-ranker, where a credibility score is injected into the input sequence instead of the BM25 score;
- CE_{BM25CredCAT}: a cross-encoder reranker, where both BM25 and credibility scores are injected into the input sequence.

Implementation Details

- We employed **PyTerrier** for indexing and implementing the BM25 model.
 - We created **two indexes**, one for TREC-2020 and another for CLEF-2020.
- As the considered document set is health-related, we used **BioBERT** along with the base version of the BERT model for cross-encoder re-ranking training and inference.
- We trained the CE on 80% of the queries-documents from one dataset (e.g. TREC-2020) and used the other query set (e.g., CLEF-2020) as the test set and vice versa.

1T SCUOLA ALTI STUDI LUCCA

Results (TREC)

TREC 2020

Represent.	Model	TREC 2020				
		NDCG@10	P@10	MRR@10	MAP	
Lexical	BM25	0.4166	0.4177	0.5107	0.2142	
	WA M	0.5065	0.4976	0.5546	0.2453	
BERT	$CE_{rel.stat}$	0.6157	0.5977	0.7101	0.3208	
	$CE_{BM25CredCAT}$	0.5784	0.5671	0.6823	0.2875	
	$CE_{CredCAT}$	0.5587	0.5581	0.6622	0.2652	
	$CE_{BM25CAT}$	0.5374	0.5398	0.6341	0.2499	
	CE	0.5589	0.5501	0.6619	0.2664	
BioBERT	$CE_{rel.stat}$	0.6704	0.6622	0.7961	0.3865	
	$CE_{BM25CredCAT}$	0.6219	0.6245	0.7512	0.3324	
	$CE_{CredCAT}$	0.6111	0.6001	0.7061	0.3015	
	$CE_{BM25CAT}$	0.5875	0.5812	0.6801	0.2765	
	CE	0.6055	0.6059	0.6997	0.2986	

1T SCUOLA ALTI STUDI LUCCA

Results (CLEF)

CLEF 2020

Represent.	Model	CLEF 2020				
		NDCG@10	P@10	MRR@10	MAP	
Lexical	BM25	0.1054	0.1081	0.1578	0.1064	
	WAM	0.0865	0.1002	0.1232	0.1102	
BERT	$CE_{rel.stat}$	0.3327	0.3401	0.5403	0.1601	
	$CE_{BM25CredCAT}$	0.3098	0.3141	0.5173	0.1356	
	$CE_{CredCAT}$	0.2633	0.2703	0.4543	0.1198	
	$CE_{BM25CAT}$	0.2288	0.2301	0.4147	0.0964	
	CE	0.2579	0.2601	0.4456	0.1165	
BioBERT	$CE_{rel.stat}$	0.3762	0.3669	0.6187	0.1964	
	$CE_{BM25CredCAT}$	0.3221	0.3221	0.5731	0.1642	
	CECredCAT	0.2805	0.2824	0.4812	0.1437	
	$CE_{BM25CAT}$	0.2414	0.2522	0.4702	0.1274	
	CE	0.2743	0.2811	0.4801	0.1474	

Further Research

- Use of LLMs for both credibility assessment and relevance statement generation.
- Extension of the study to **other dimensions of relevance**.
 - Need for labeled datasets.
- Explainability of the results obtained (w.r.t. each relevance dimension).
 - Need for evaluation metrics addressing distinct relevance dimensions independently.
- Open to further discussion.

Thank you for your attention!

Grazie per l'attenzione!

Questions?

